Anderson dos Santos Galeote

Uma aplicagéo do framework Apache Isis

Monografia apresentada ao PECE -
Programa de Educagdo Continuada em
Engenharia da Escola Politécnica da
Universidade de Séao Paulo como parte
dos requisitos para concluséo do curso de
MBA em Tecnologia de Software.

Sa0 Paulo
2014

Anderson dos Santos Galeote

Uma aplicacao do framework Apache Isis

Monografia apresentada ao PECE -
Programa de Educagdo Continuada em
Engenharia da Escola Politécnica da
Universidade de S&o Paulo como parte
dos requisitos para a conclusdo do curso
de MBA em Tecnologia de Software.

Area de Concentragéo: Tecnologia de
Software

Orientadora: Prof. Dra. Jussara Pimenta
Matos

Séo Paulo
2014

DEDICATORIA

Dedico este trabalho & minha esposa,
que pacientemente me apoiou
durante todo este curso, e que
sempre me deu forgas para continuar
crescendo profissionalmente.

AGRADECIMENTOS

Ao PECE — Programa de Educagdc Continuada em Engenharia que forneceu neste
periodo de aulas do curso de especializagdo em Tecnologia de Software, grandes
conhecimentos, qualidade e experiéncia de seu quadro de professores.

A professor Jussara, que pacientemente revisou meu trabalho e soube lidar com as
condigbes adversas do trabalho, dando conselhos e corrigindo de maneira direta e
assertiva.

Aos meus pais e irmaos gque sempre me apoiaram para ingressar na pés graduagao
para complementar meus conhecimentos e minha formagao.

E principalmente a minha esposa, por além de me incentivar, apoiar e servir de
conselheira, é a responsavel por me dar forgas para lutar e continuar indo atras dos
meus sonhos.

RESUMO

Este trabalho apresenta uma aplicac@o pratica da ferramenta Apache lsis, disponivel
como projeto open source, e utilizada para geragédo répida de aplicagdes am Java
baseadas em modelo de negécio. Este modelo utiliza o DDD (Domain Driven
Design) e o paradigma Naked Objects. Para o desenvolvimento deste tema, foi
estudada uma reconstru¢do inicial de um sistema real de uma pequena empresa do
ramo logistico, utilizando a ferramenta Apache Isis na fase de prototipacéo e o DDD
na especificacio técnica.

Palavras-chave: Domain Driven Design, Naked Objects, Apache lsis, Java.

ABSTRACT

This work presents a practical application of Apache lsis, available as a open source
project, and used for rapid development of applications in java, through business
model using DDD (Domain Driven Design) and the paradigm Naked Obiects. To do
so, it will be evaluated a initial rebuild of a real application owned by a small logistics
company, usind Apache Isis tool for prototyping and DDD in the technical
specification.

Keywords: Domain Driven Design, Naked Objects, Apache Isis, Java.

LISTA DE ILUSTRAGOES

Pag.

Figura 1 — Tela do Framework Naked Objects aplicado ao Carserv em interface

L0312y B L= Y= SO O OO 23
Figura 2 — Tela do Framework Naked Objects aplicado ao Carserv em interface

HTIML . oottt rm e s seess e e s ren e ns baessbesaas sanssancunnnnrs 23
Figura 3 — Exemplo significado da arquitetura hexagonal com algumas portas

=11V L= OO RSP ETOTP 25
Figura 4 — Tela de listagem mostrando a lista de To Dos (Tarefas) de forma

o (1] v D U 26
Figura 5 — ToDoltems herda da classe AbstractFactoryAndRepository................... 27
Figura 6 — Menu do Isis trazendo as agdes possiveis, que estdo implementadas na

classe ToDoltems do tipo AbstractFactoryAndRepository.........ceeune 28
Figura 7 — Tela de cadastro de uma nova tarefa (“TODO")...ccouorirniniiie 28
Figura 8 — Tela de detalhe de uma nova tarefa ao se clicar em algum item da

listagem da primeira imagemcccocooviiimricnrnisi e 29
Figura 9 — Tela de relatdrio de VIagens. ... 40
Figura 10 — Tela de listagem de veiculos.......ououiiieceeeee 40
Figura 11 — Cadastro de VeiCUIOS........cccoorrreiiniirieiicce e 41
Figura 12 — Diagrama de classes com aplicagdo de modelo de dominio................. 42
Figura 13 — Tela da listagem de viagens prototipada via Apache Isis...................... 44
Figura 14 — Tela de edi¢ao de uma Viagem........ccociiiiininnnn et 45

Figura 15 — Tela de listagem de veiCUIOS.........ccriniieiiiiine e 45

LISTA DE TABELAS

Tabela 1 — Tabela retirada da sesséo 7.4 da tese de Pawson (2004).................... 36
Tabela 2 — Comparagéo dos indices acerca de classes externas para cada estudo
o L= T 0= 1= o SO USSR 37

AJAX
AP|
ASP
DDD
DSFA
DSL
HTML
IDE
JDO
JPA
MDD
MVC
POJO
XML

LISTA DE ABREVIATURAS E SIGLAS

Asynchronous Javascript and XML
Application Programming interface
Active Server Pages

Domain Driven Design

Department of Social and Family Affairs
Domain Specific Language
Hyper-Text Markup Language
integrated Development Environment
Java Data Objects

Java Persistence API

Model Driven Design

Modet View Controller

Plain Old Java Objects

Extensible Markup Language

10

SUMARIO

Pag.
1, INTRODUGAD ..o estentsrs s ss s s sb s sa s e se e et st bt e bbb ks sn s s b e n o 11
1.1 IVIOTIVECOES v eeveerieiesieser st encrceeee s s s mbest s bbb ia st sa e s b e e se e B s e s e et e s ss e s ar s an LS RS LR B Neabe b e SR e Bt s e 11
1.2 OBJELIVO ...cvveeeervresecmsaeseasserssnsssssasissssssssasssssssasssosstssstonsansesassaise st sseserenas resasasssnas usrapsssssssstasesbassnsts 12
1.3 JUSTIFICATIVAS coeeecreesrisireissisrissereseeseserassrnssnesssestansncssssnsss st s bt snasssn e seresbboshseanssbansstassrestinsesanaraseesas 12
1.4 EStruLUra do Traballio .ot ie st s s s b s sh e s s b e e e s s 13
2. REVISAO BIBLIOGRAFICAouveen et ssre s esssssassssossssssssss st st bvenssesssssssesass st asssp st st st assnenss 15
2.1 DOMAIN DIIVEN DESIENM . it ceerir e er et et b et ba s s a s s b vme s e s s e r e sm e e A bR R bR R e 0s 15
2.2 Naked Objects — Paradigma € framework.......cciiminiimm s s bsansnsn 19
2.3 Framework APACHE ISI5 ..o iriiiee e et ececsbsstsesisns st e s b e s e ar e sabensarasstabbg s g e abas st sn ent 22
2.4 Especificacac do APAChe ISIS ... s e s 25
3, Proposta de EVOIUGED e SOFIWATE ..uevceiciciiiienss s iss bt ettt sban s 30
3.1 Apresentagdo das deficiéncias do software atual da transportadoraccovveniinniciines 30
3.2 Domain Driven DESIZN € 1505 wueiierinirinicsniissssssarsessesmsssaesssssisnaisnte sasse amnsessas anst vesarasssensssrsssrsens 31
3.3 Enriquecimento do modelo de NEZOCIO ... e 32
3.4 Framework orientado a objetos compativel com 0 DDD ..o 32
4. AValiagio dOS FESURBADScccrveeeeeer ettt et a s s sm s s o b b s s s bR s s s b s st s e 35
4.1 Avaliagio do Naked ODJECES ...t b b st s sh s s 35

4.2 Aplicagdo da proposta para o software de controle logistico atual ndio Orientado a Objetos —
APACHE [SIS ©M BCAD .veuiii it s e e s e bbb e 38
4.3 Domain Driven Design aplicado ao problema.........c.oviiiie i, 41
4.4 Naked Objects/Apache isis aplicado a0 problema.........icvieenccs e 43
4.5 Avaliacdo dos RESURAUOSccvmvierinniii i s st s s be st e b s sa s 47
4.5.1 EvolucBo da especifiCacio.....u i s s a7
4.5.2 PrototipagB0o e Fase INICIAL...c i s st s e 47
4.5.3 Comparacdo da implementagao ... e e 48
4.5.4 Consideractes do CapitUlO......uu i ecrceaminiismiisiin e es s et st ssssse s sesssese 49
5. CONSIDERAGOES FINAIS......coovieueuierseeecererssssssast s issassossssssas ot s s s sssssbsbss st sssssssssssssssssnasssanseos 51
5.1 Contribuigdes do Traballo ... 51
5.2 TrabaIN0S FUIUIOS. ...cvereicrct it eres s sesases s sens st bas s s s b sba s b s p s nesantsaebaa s ba st absebs s n et e 52

REEERENCIAS v oo eee v eeeesesessssssasssenessssssansanesasenssesssasatssassanseasesanssssessabsssasnseseasssestsrsasnsssnsssesndasonesess 53

11

1. INTRODUCAO

1.1 Motivacoes

O mercado de tecnologia da informagéo evolui de forma incessante, desde o
surgimento da computagdo e da sua adogdo em massa. Esta evolugéo colabora
para que cada vez surjam novas ideias, novas formas de atuagio e novos conceitos.

Numa area como a da tecnologia da informagao, é critico o fato de que os
profissionais que se dedicam a ela, estudem nédo apenas a esfera de conhecimento
necessaria para a execugdo de seu trabalho comercial ou evolua em sua pesquisa
cientifica, mas também que transcenda esta esfera de conhecimento, buscando
sempre aprender e methorar a qualidade do trabalho executado.

Diante desta evolugéo de conceitos e de formas de se pensar, é interessante
para todos o0s envolvidos, tais como, instituicdes de ensino, laboratérios de inovagao,
empresas privadas investidoras em tecnologia, empresas consumidoras de
tecnologia, profissionais do mercado de trabalho, que haja novos estudos e novas
descobertas nesta &area, capazes de impactar positivamente a forma como é
aplicada a tecnologia no dia a dia.

O desenvolvimento de software € um tema gue normalmente é estudado
desde a sua concep¢ao até a manutengdo, em todo o ciclo de vida. Melhorias nesta
area trazem um avango significativo na maneira como se aplica software € como se
resolvem problemas diante de um mundo cada vez mais tecnolégico. O tema
abordado referente ao desenvolvimento de aplicagdes oferece um aprofundamento
que o autor gostaria de desenvolver, principalmente utilizando técnicas provenientes
de pesquisa que mostram ser influenciadoras de tecnologias de mercado largamente
usadas.

Ao se estudar uma ferramenta cujo uso estd em crescimento por alguns anos,
aliada ao conhecimento adquirido em desenvolvimenio de aplicacdes que utilizam
codigo aberto, é possivel contribuir com a experiéncia. isto pode ser alcangado, seja
compreendendo melhor a ferramenta proposta através do estudo da parte teorica,
ou participando ativamente da comunidade que a mantém e contribuindo com
algum tipo agéo.

12

1.2 Objetivo

O objetivo principal deste estudo é aplicar ferramentas para atualizar um
software existente, estudando possiveis melhorias que podem ser adquiridas nas
fases iniciais de desenvolvimento, com o foco no enriquecimento de detalhes na
especificacdo do modelo de negobcios, utilizando a notagdo UML, e também no
processo de prototipag¢éo da aplicagéo.

Para um estudo envolvendo a atividade de desenvolvimento, & necessério
que sejam explorados conceitos técnicos que possam ilustrar o contexto no qual ele
estd inserido, e encaixa-lo de forma a ser localizado entre 0 gque se fem hoje
disponivel no mercado de TI, como uma técnica de desenvolvimento, ou uma
aplicagdo de uma ferramenta.

Nesta monografia, a aplicagdo de uma ferramenta de cédigo aberio é
proposta e executada, unindo conceitos j& conhecidos e consolidados, com novas
ideias que tem como objetivo aprimorar o processo de desenvolvimento de sistemas.
Este é o caso dos conceitos do Domain Driven Design (EVANS, 2004) e do Naked
Objects (PAWSON, 2002), além da ferramenta Apache Isis (HAYWOOD,2013).

1.3 Justificativas

Atuaimente a orientagdo a objetos & um dos paradigmas com exiensa
adogdo do mercado de TI|. Existem diversas outras ferramentas, linguagens e
tecnologias que estdo relacionadas entre si, e movimentam a atividade da
construgdo de software. Em particular, as tecnologias de cédigo fonte aberto e livres,
atraem pessoas de diversas parte do mundo, interessadas em solidificar esses
projetos e ainda mais contribuir intelectualmente com a proposta.

O Apache Isis (HAYWOOD,2013) é uma dessas ferramentas, que esta em um
processo timido de avango, porém tem uma comunidade ativa que apoia a evolugao
do produto e que busca difundir a utilizagdo de seus conceitos. Sua popularidade se
deve aos anos de pesquisa em que o Naked Objects (PAWSON, 2002) esta
presente desde as primeiras obras de gque o apresentaram.

A ferramenta traz consigo a utilizagdo da tecnologia Java, atualmente uma
das linguagens de programagio mais utilizadas, aplica a orientagéo a objetos, ¢ esta

13

em um ambito de projeto de cédigo fonte aberto, fazendo parte da organizacdo
Apache, que é respeitada pela forga que tem neste nicho de mercado colaborativo.

Além disso, propde uma quebra de paradigmas ao se irazer inovagbes na
maneira como se projeta e se constréi software, com a premissa de beneficiar todos
envolvidos em seu contexto de aplicacdo, além de trazer avangos no conhecimento
dos desenvolvedores e especialistas do projeto para uma maior utilizagho de
conceitos de modelagem e a utilizagdo de uma linguagem poderosa como Java para
a criagdo de aplicagbes de qualidade em relagdo & expectativa dos usuarios.

A utilizagéo do Domain Driven Design é um ponto crucial para o estudo e a
aplicagdo de um estudo do Apache Isis. Portanto, o trabalho utiliza destes conceitos
para fornecer subsidios para o Apache lIsis, e desta forma proporcionar um contexto
ideal de utilizago.

Estudar conceitos e ferramentas com estas caracteristicas, que abrange fases
cruciais no projeto de desenvolvimento de software, é uma valiosa oportunidade
para um profissional que estuda e atua com a Engenharia de Software.

1.4 Estrutura do Trabatho

O Capitulo 1 apresenta as motivagbes, o objetivo, as justificativas e a condugao do
trabalho quanto as ferramentas e conceitos que sdo estudados, e principalmente o
gue levou o autor a pesquisar sobre os temas.

O Capitulo 2 apresenta os conceitos que foram necessdrios para a aplicagdo do
framework Apache Isis, que incluem o paradigma Naked Objects, e o Domain Driven
Design.

O Capitulo 3 apresenta a proposta da adogao das técnicas visando promover
melhorias no desenvolvimento e atualizagdo de um sistema legado, através da
evolugdo de cédigo procedural para uma modelagem Orientada a Objetos,
enriguecendo o modelo de negécios e o protdtipo do produto novo.

O Capitulo 4 apresenta dois estudos de caso, um deles sendo a apresentacéo de
um estudo presente nas referéncias técnicas. O outro é o ponto chave da aplicagao

14

do trabalho, que coloca em pratica a modelagem Orientada a Objetos utilizando o
Domain Driven Design e aplica a prototipagdo com o Apache Isis. Ao final deste,
demonstra-se a avaliacdo dos resultados qualitativos perante a utilizagéo das
técnicas e ferramentas deste trabalho na atualizagdo do software.

O Capitulo 5 descreve as conclusdes referente ao estudo proposto e aplicado, e
apresenta um resumo sobre o processo de conhecimento, estudo e aplicagdo
principalmente do Apache Isis. Apresenta-se neste capitulo os proximos passos que
poderiam ser dados para se continuar o estudo da ferramenta.

REFERENCIAS relacionam os principais autores explorados no trabalho, com maior
destague para as obras que serviram de base para a aplicagdo do framework, como
a obra que apresenta o DDD (EVANS, 2004), as obras que apresentam o Naked
Objects (PAWSON, 2004) (HAYWOOD, 2009) e a apresentagao do Apache lsis
(HAYWOOQD, 2013).

15

2. REVISAO BIBLIOGRAFICA

Este trabalho aborda o paradigma DDD (Domain Driven Design) (EVANS,
2004), que inclui padrées de projeto para a composicdo de seus conceitos, 0
paradigma Naked Objects (PAWSON, 2002) e o framework Apache Isis
(HAYWOQD, 2013), ambos baseados na geragdo de aplicagfes orientadas a
objetos.

2.1 Domain Driven Design

Na area de Desenvolvimento de Software, o paradigma de Orientagéo a
Objetos pode se beneficiar com a adogdo de Padrdes de Projetos (“Design
Patterns”) (FOWLER, 2002). Estes padrdes sdo utilizados e desenvolvidos para
facilitar e organizar o desenvolvimento, padronizando aplicagdo de conceitos que
acabam se repetindo em diferentes projetos.

Autores e pesquisadores (CARMICHAEL, 2002; FOWLER,1999) tém se
dedicado a encontrar formas de desenvolver software de maneira facilitada,
principalmente nas fases de implementac&o, procurando otimizar o tempo e por
consequéncia diminuir o custo. Além disso, facilitar a compreensio do software
tanto em tempo de projeto quanto em tempo de manutengao.

O DDD (EVANS, 2004) é um conjunto de praticas, processos e técnicas de
modelagem do negdcio, que propde principalmente aproximar o modelo de négocio
da implementagéo do software. O objetivo & prover uma forma de abordar 0 modelo
explicitando de forma direta as regras do processo a ser implementado, utilizando-se
dos Padrdes de Projeto, iteragbes répidas e assertivas em relag8o as regras de
negécio e desta forma, gerar um sofiware ndo apenas que atenda as caracteristicas
inicialmente requisitadas, mas intrisecamente representar o processo de forma fiel.
iteracBes ageis sdo ciclos encurtados de desenvolvimenio e entrega de software de
forma incremental, norteados pelo envolvimento e aprovagéo do cliente a cada uma
destas eniregas.

Um item importante apresentadc no Domain Driven Design, é a
caracterizagdo de uma linguagem ubiqua (“Ubiquitous Language”) (EVANS,2004).
Essa linguagem Unica pode ser definida como o dialeto a ser especificado e adotado

16

por todos envolvidos no processo de especificagdo do negécio, sejam eles analistas
de negdcio, desenvolvedores, gerentes e usuarios.

Evans (2004) propde que para se iniciar um processo de evolugéo na
modelagem, deve ocorrer um brainstorm com os interessados no projeto em suas
fases iniciais, bem como uma padronizagdo na linguagem do negécio criando um
vocabulario de projeto. Desta forma, unird o que o usudrio tem de conhecimento,
traduzido para uma linguagem Unica que podera representar diretamente as regras
em um diagrama de classes, por exempio, ou em qualquer modelo capaz de
representar 0s processos e particularidades do negécio. Isto tem como resultado a
composigdo da Linguagem Ubiqua, que € uma linguagem Unica e comum entre
todos envolvidos no projeto, estabelecida para facilitar o entendimento do modelo de
negécio. Em Evans (2004) é apresentada uma definicdo direta e simples: “Com um
esforco consciente entre a equipe, ¢ modelo de dominio pode prover a espinha
dorsal para essa linguagem comum"”.

O Domain Driven Design propde técnicas e praticas que permitem uma
melhor traducdo do cenario real. Para os primeiros passos da exploragdo do
conceito, sdo apresentadas algumas dessas técnicas chave para o inicio do
processo de levantamento de requisitos, sendo elas: Entidade, Objeto de Valor,
Servigo, Agregagao, Fabrica e Repositorio.

Para iniciar, & aconselhavel que se elabore um ftrabalho conjunto entre
detentores do conhecimento e especialistas técnicos responsaveis pela
implementac&o para que o conhecimento se unifique e se firme. Nao existe tambem
obrigatoriedade no conceito de modelo a ser usado para representagao, porém para
o DDD, assume-se o diagrama de classes proposto na especificagdo da UML
(BOOCH, 2005), desenvolvida como uma das formas para se representar modelos
orientados a objeto e sistémicos.

As principais técnicas e padrdes que sdo explorados no Domain Driven
Design sao:

A) Entidade: o principal padrac de projeto utilizado para definir objetos no
DDD. A entidade, também conhecida como objeto de referéncia, pode ser
determinada quando um objeto é idealizado e modelado ao se levar em
consideracéo que o mesmo tem uma identidade Gnica. Para o DDD, as entidades
sdo os principais objetos. De preferéncia, devem ser 0s primeiros a serem
identificados junto aos usuarios gue conhecem o modelo.

17

B) Objetos de Valor: diferente da Entidade, é possivel utilizar de diversos
outros objetos na modelagem da neg6cio, que ndo possuem uma identidade
conceitual, chamados de Objetos de Valor. Esses objetos por vezes podem ser
confundidos com caracteristicas de Entidades, sendo campos primitivos de uma
dada tecnologia, como um inteiro, ou uma estrutura de texto. Porém, ao levar em
consideracéo o0 modelo de negdcio que ¢ alvo de andlise, por vezes é inieressanie
que seja utilizada uma estrutura de objeto que ira ter suas caracteristicas.

C) Servigo: quando o modelo possui aiguma necessidade de negdcio, que
ndo necessariamentie pode ser satisfeita pelas Entidades ou pelos Objetos de Valor,
@ uma vez que essa necessidade seja para todo 0 modelo, pode ser considerada a
criacdo de Servicos. O autor do DDD (EVANS, 2004) sugere os seguintes itens
relevantes a serem levados em conta para uma criagdo de um Servigo adequado:

» A operacdo identificada no modelo de negdcio se relaciona com um
conceito que ndo é uma parte natural nem de uma Entidade ou de um
Objeto de Valor;

o A interface é definida em termos de ouiros elementos do modelo de
dominio;

* A operagéo é independente de esiado do objeto.

D) Agregagéo: com base nos conceitos do DDD, existem situagdes aonde é
recomendada a utilizagdo de um processo de organizagéo de entidades e objetos de
valor do modelo, no qual se agregam os objetos dentro de um conceito. Este
conceito visa manter a consisténcia das associagdes entre as classes, de forma que
a alteragdo em uma agregagdo acontega de forma controlada e coordenada pelo
objeto principal. Neste caso, o objeto principal é chamado de raiz da agregagéo.

E) Fabrica: para a construgdo de um objeto com maior complexidade, o DDD
incorpora o padrdo de Fabrica. A Fabrica deve ser utilizada para cria¢do de objetos
Agregados, cuja constituigdo pode requerer operacbes coordenadas, e que sejam
realizadas de acordo com o conjunto de objetos que o compde, levando em
consideragao como cada um destes componentes deve ser encaixado ao objeto

18

Raiz. A Fabrica possui a receita para a construgéo de um produto a ser solicitado
pelo codigo.

F) Repositério: outro conceito apresentado pelo autor do DDD (EVANS,
2004) é o de Repositério. Este conceito visa fornecer uma interface com o
mecanismo de provisionamento de dados. Este mecanismo pode ser um banco de
dados relacional, arquivos fisicos, arquivos xml ou texto, e até dados na memoria. O
principal objetivo, é criar um Repositério que fornega métodos de adigéo, alieragao,
e remocdo de itens, bem como métodos de acesso e composigio de critério para
gue o mesmo devolva um objeto ou uma colegdo de objetos. Em caso de
agregacdo, deve ser considerado o objeto raiz que seja de relevancia, e a
consisténcia entre seus agregados. As classes repositério tdm uma ligagéo estreita
com as classes do tipo Fabrica, uma vez que a (ltima precisa de dados que
normalmente estdo em um mecanismo de armazenamento especifico,
funcionalidade aplicada pelo Repositério.

Estas sdo algumas das técnicas apresentadas na obra original e que séo
adotadas no escopo deste trabalho. Elas podem ser combinadas de forma a
melhorar 0 modelo na tentativa de deixa-lo da forma mais coerente com a regra de
negdcio. Inclusive, o autor exercita e aplica técnicas de refatoragio de um modelo de
exemplo em sua obra (EVANS, 2004), demonstrando a importancia no uso das
mesmas para esta fase de especificagdo. Ou seja, um dos processos mais
importantes no qual o DDD se apoia e incentiva, é a constante exploragdo do
modelo com os detentores de conhecimento, sempre procurando prover maior
clareza, consisténcia e maturidade.

Além da utilizagéo destes padrdes, a formagdo de uma DSL (Domain Specific
Language) também é proposta por Evans (2004). Esta proposta seria, escrever €
especificar de forma clara e informativa ja em linhas de cédigo, o que cada trecho do
software esta se propondo a executar. Isso pode ser alcangado ao se dar nomes
objetivos para varidveis e usar uma sequéncia descritiva como nome de fungbes.

Desta forma, o proprio codigo passa a comunicar as regras do negécio,
desta forma facilitar o entendimento deste cédigo para desenvolvedores ou analistas
novos, e até mesmo para um pessoas sem conhecimento técnico na linguagem de

19

programacdo. A DSL deve concretizar os detalhamentos da linguagem unica na
escrita do codigo fonte.

2.2 Naked Objects - Paradigma e framework

O Naked Obijects foi proposto por Richard Pawson e Robert Mathews (2002)
oficialmente na obra de mesmo nome. Foi criado como uma proposta nova referente
ao paradigma orientado a objetos, e que vem para mudar a forma como hoje séo
empregadas as técnicas de levantamento de requisitos e a especificagdo do
software desde a fase do protétipo, até as iteragdes de consirugdo do mesmo.

Os autores em sua obra buscam mostrar que atualmente existe um conceito
mal utilizado da orientagdo a objetos e propem uma nova abordagem para tal. O
principal quesito citade frequentemente pelo autor é a continua separagdo entre
comportamento e dados, indo contra os principios da prépria orientago a objetos.
Em sua obra cita uma colocagio sobre esta separagdo, definindo como “(...)
acoplamento excessivo, e uma distribuigdo inadequada da inteligéncia da aplicagéo
entre as classes(...)" (FIRESMITH, 1996).

Pawson (2004) publicou posteriormente em sua tese de doutorado, o
paradigma e o framework orientado a objetos, ambos chamados de Naked Objects,
além de estudos que comprovassem seu ponto de vista sobre a orientagdo a
objetos. Este paradigma é definido como uma representacéio direta de objetos,
modelados de forma a possuirem uma verdadeira “compleieza de comportamento” e
responsabilidade. Esta representagdo é feita através de uma interface grafica
orientada a objetos (OOUI — Object Oriented User interface) (COLLINS, 1995),
trazendo para o usudrio os objetos como unidades disponiveis para manipulagao e
ativagéo de agdes.

Diferente de interfaces hoje conhecidas, o usuario deixa de operar sobre
tarefas sequenciais para obter um cendrio de execug¢do, mas sim uma interagéo
entre 0s objetos que fazem sentido para o processo de negoécio, corretamente
relacionados a um alto nivel de coeséo entre classes e também com 0 processo
mental para a resolucdo de problemas.

Para comprovar e dar fundamento a suas idéias, os criadores Pawson €
Matthews (2002), exploram conceitos propostos desde a década de 60, periodo
considerado marco da criagéo das primeiras tentativas de representagdo de software

20

através de objetos. Procuram mostrar que através do tempo, houve um desvio do
que se entende por software orientado a objeto, e da forma como o paradigma é
aplicado no design € na implementagao.

Por vezes, o modelo de negdcio é empobrecido ao ponto de ser identificavel
apenas pelos nomes em comum de entidades, e com responsabilidades
disseminadas por N camadas, criando muitas instdncias da mesma entidade em
cada camada, com responsabilidades diferentes. Um exemplo disso seria nas
aplicagbes modernas do conceito MVC (Model-View-Controlier) (REENSKAUG,
1979).

Para o modelo MVC, existem objetos que possuem responsabilidades na
camada de Modelo (comumente utilizada para toda a l6gica do negécio e interface
com a persisténcia de dados), na camada Controller (normalmente, objetos que
saberdo como orquestrar o fluxo entre ¢ que o usuario faz na interface com o
computador e o que serd executado dentro do sistema) e até uma tela da camada
de View (exemplo de uma pagina em um browser ou uma tela, que é responsavel
pela interface com ¢ usuario).

Qualquer alteragdo no contexto de um objeto como um novo atribute e regra
de manipulagio do mesmo, poderia levar a uma manutengdo disseminada em varios
artefatos. O contexto deste objeto estaria fragmentado, quebrando um entendimento
fluente de quais sdo os limites de sua utilizagdo e responsabilidades dentro do
cédigo fonte. Um desenvolvedor novo na equipe acabaria entendendo
primariamente como um determinado conceito funciona para a implementagao do
software, antes mesmo de entender as regras do negécio corretamente.

Em sua tese, Pawson {2004) teve o privilégio de ter seu trabalho revisado
pelo professor Trygve Reenskaug, criador do modelo Model View Controller (MVC).
Conhecido como um dos pioneiros da programacéo orientada a objetos, o proprio
publica na revisgo do trabalho de Pawson (2004), que seu objetivo ao criar 0 modelo
MVC era prover um maior poder ao usuario na resolugéo de problemas ao usar o
software, tendo esie uma traducgéo fiel de como a estrutura estd na cabega do
proprio utilizador. A camada de Modelo foi visualizada como a camada mais
importante, que traria a representagdo deste modelo de forma contundente para
dentro do software. Porém, posteriormente houve uma alteragéo do conceito, como
descrito pelo professor Reenskaug:

21

[...] © MVC original foi alterado posteriormente no Smalltalk-80 para se tornar uma
solugdo que separou entrada, saida e informagéo. O participante mais importante na
arquitetura MVC original, a mente do usuério, foi de alguma forma esquecida. (...)
Existem duas tradicdes em aplicagbes de computadores; uma é empregar o
computador para potencializar seus usudrios, e outra é aplicar o computador para
controlar os usudrios. Eu lamento dizer que a Ultima parece ser prevalecedora na
area dominante da computagéo de hoje. [...] (REENSKAUG, 2004, p. 3}

No Naked Objects, a utilizagdo do conceito de MVC nédo é abolida, mas sim
sugere-se que as camadas de View e Controller devem se tornar um poderoso
conjunto de transformagdo de objetos da camada Model, em uma interface OOUI,
colocando em pratica o conceito de objetos expostos ao usudrio, e de
potencializacdo de suas agdes através do sofiware.

Outro conceito discutido e criticado na tese, é a utilizagdo da tecnica de
levantamento de requisitos utilizando-se casos de uso. Desta vez, séo citados
autores como Firesmith (1896), que defende que o caso de uso quando usado para
a identificacdo de objetos na fase de exploragéo do software, pode causar um
empobrecimento na criagdo do modelo levando a um alto indice de acoplamento
entre objetos, e ainda mais podendo disseminar as caracteristicas e
responsabilidades dos objetos entre as diversas camadas a serem criadas. !sto,
devido a importancia dada a sequéncia de acdo do usudrio j4 se pensando na
interagéo entre homem e computador, e esquecendo as importantes interagdes e
relacionamentos entre as entidades identificadas.

Uma evidéncia disso, € 0 mapeamento dos passos descritos em um caso de
uso, para um objeto controlador ou orquestrador, que deve saber como a aplicagéo
faré todo o fluxo envolvendo os objetos, o0 que atrapalharia a completeza dos objetos
do dominio defendida por Pawscon (2004). Entretanto, em sua obra, existe o
reconhecimento que casos de uso slo interessantes ao serem usados para
validagdo de protétipo ou até de resultado de uma ou mais iteragdes de
desenvolvimento, ao se ter um dos cendrios completamente construido no software.
O caso de uso pode servir como um poderoso guia de testes.

Um dos principais pontos citados por Richard Pawson (2004), seria a ressalva
ao indicar o tipo de projeto que se encaixa melhor com o paradigma Naked Objects.

22

Para uma avaliagdo desta questdo, deve-se verificar se qualquer uma das sentengas

abaixo é verdadeira:

* Havera beneficio em caracterizar o papel do usuério como um resolvedor de
problemas, ao invés de um seguidor de processo;

o Futura agilidade do negécio é uma preocupac¢do primaria;

» Qs requisitos sao incertos.

E se todas as sentengas abaixo s&o verdadeiras:
¢ N&o ha nenhuma razdo clara para se ter uma interface personalizada feita “a
mao”,
¢ (s usuarios serdo usuarios frequentes;
e Todo processamento batch é relativamente simples, ou pode ser tratado como
um sistema separado.

Além da apresentagdo da teoria do que seria o Naked Objects, Pawson
(2004) demonstra estudos que indicam a viabilidade na adogdo do conceito em
projetos reais. A criagdo do framework que implementa o conceito evoluiu nos

projetos que ¢ autor executou em projetos que conduziu.
2.3 Framework Apache Isis

O framework Apache Isis tem como seu embrido o projeto ainda conduzido
como Naked Objects, iniciado por Pawson e Matthews (2002). Apresentado também
por Haywood (2009) que possuia inicialmente duas interfaces disponiveis para
estudo: uma principal com o foco em aplicagbes client-server, e outra para
aplicagbes Web.

Em sua obra, como parte da condugédo do estudo da aplicagéo, Haywood
propbe um projeto de uma aplicagéo ficticia de uma oficina mecénica de carros
chamada CarServ (este modelo de projeto ja era um exemplo utitizado em um livro
anterior de Dan Haywood e Andy Carmichael (2002) e também aplicado na tese de
Pawson (2002)). Seguem duas imagens, figuras 1 e 2, gue mostram como seriam as
telas do CarServ para cada objetivo:

23

Figura 1 - Tela do framework Naked Objects apiicado ao CarServ em interface Glient Server

|

.
| customers
| SN

e e A

= . N -

l-L-»l-L-bu:f:.ei

powarad by
MAKED Ilucrs !

J

——

Figura 2 - Tela do framework Naked Objects aplicado ao CarServ em interface HTML

€« <]

i aphcatives [smin [Google 8 TheJaa Vietual Mac

®

Customers | Cars

localhost t 14

(] Menogeafia

Naked Objects

HT ML Viewer

Catendar Service Demo |

& 3 objects

7 ™1 Joe Bloggs

LogOut | About | Swep User |

¥ M Kunl Cobam

7 W& Doe Snydar Bloggs

A figura 1, apresenta como ficaria a aplicagdo deskiop client-server, gerada

automaticamente pelo framework Naked Objects. A figura 2, seria a aplicagao

gerada em HTML, no formato de aplicagdo Web. Este segunda geragéc pode ser

considerada como ¢ embrido do Apache lsis.

Haywood explora o framework através de conceitos do Domain Driven

Design, proposio por Evans (2004), tendo como proposta principal alcangar uma

OOUI ideal. Através dos anos, o Naked Objects evoluiu para dois projetos

24

diferenciados apenas por tecnologia de implementagéo final, sendo o Apache lIsis
utilizando a tecnologia Java sob a responsabilidade de Haywood, e o Naked Objects
utilizando o Microsoft.Net, mantido por Pawson e Matthews. O Apache lsis foi
reconhecido e promovido como um projeto oficial Apache em meados de Outubro de
2012 (HAYWOOD, 2012).

Atualmente, o Isis incorpora uma série de frameworks e produtos open-source
especificos do mercado voitado para a tecnologia Java, que visam tornar o produto
final uma solugdo completa em termos de definigdo de arquitetura de sistemas.
Oficialmente, se utiliza a tecnologia Java, especificamente voltada para a Web,
implementando alguns frameworks conhecidos como o Apache Wicket (camada de
View), implementagdes das especificagbes de mapeamento objeto-relacional
JPA/JDO (Java Persistence APl/Java Data Objects) através do DataNucleus,
implementagio de ferramenta de geragdo de log Apache Log4J, a ferramenta de
seguranga e controle de acesso Apache Shiro, entre outros.

Estd em um estiagio de constante evolugdo, com uma comunidade de
colaboradores ativa, liderada pelo proprio Haywood. Como parte de conhecer melhor
a ferramenta, o autor deste trabalho participou como visualizador, do férum de
gestdo e desenvolvimento do lsis, para desenvolvedores e usuarios. Nesta lista,
diversos usuarios contribuem com suas experiéncias e dlvidas ao utilizar o
framework, e airavés de situacbes inesperadas de erros ou de sucesso, Sao
trocadas informagdes valiosas para esta citada evolugéo.

O Apache [sis tem como seu principal objetivo, implementar os objetos
definidos na identificagdo do modelo de dominio, fazendo com que seu utilizador se
preocupe com este item apenas, deixando de lado decisdes arquiteturais adicionais
das outras camadas da aplicagdo. QOutros beneficios defendidos pela comunidade do
Isis sdo a facilidade no processo de prototipogdo e na construgdo da aplicagéo
quanio a quesitos de rapidez e baixa complexidade. Por ser um projeto de uso livre,
também d4 suporte para cusiomizagdo e extensdo, como a alteragéo para a
utilizacdo de outras interfaces. Ouira caracteristica importante do Isis & a adogéo de
um modelo de arquitetura hexagonal (COCKBURN, 2005).

O objetivo desta arquitetura é prover pontos de conexdo com diversos tipos
diferentes de “adaptadores”, que podem ser desde uma interface HTML de entrada,
como uma saida de dados por um arquivo de texto, ou uma persisténcia de dados.
Utilizando essa arquitetura, o modelo de dominio permanece preservado e com sua

25

rigueza de expresséo do negécio. O formato de hexdgono apenas foi escolhido pelo
autor para facilitar na confecgéo do diagrama ao se encaixar novos adaptadores ou
portas. Uma ilustragdo de uma arquitetura hexagonal pode ser visualizada na figura
3.

Figura 3 - Exemplo simplificado da arquitetura hexagonal com algumas portas “ativas”

Client/Server

HTML Wicket? XMIL?

sqL?

[ensip
Persisténcia

oglez

Aplica¢do Central - Objetos

O da Modelo do Dominio

Porta View Ports BD

Segurang¢a 35807

Shiro?
Porta Seguranga

Ao focar prioritariamente nos objetos do dominio, o utilizador do framework
deve se preocupar com decisfes menores de arquitetura do Isis, para que o0
mapeamento seja feito corretamente dependendo da solucéo escolhida.

2.4 Especificagao do Apache Isis

O framework funciona através de um mapeamento direto dos objetos, o que
significa que a escrita do codigo Java pelo desenvolvedor deve ser feita da forma
padrao consolidada, ou seja, através de POJOs (Plain Old Java Objects), que é uma
nomenclatura criada para descrever objetos de estrutura simplificada, sem
convengdes impostas por frameworks que alteram a escrita do cédigo fonte. Este
tipo de classe, levando em consideragdo a aplicagdo dos padrbes Entidades e
Objetos de Valor, por exemplo, serdo mapeados em tela.

Na figura 4 é apresentada uma tela de um sistema padrio disponivel na
pagina do Apache lIsis, com uma aplicagdo de exemplo para gerenciamento de
tarefas (Todoftem como na expressao em inglés To do - tarefa):

26

Figura 4 - Tela de listagem mostrando a lista de To Dos(Tarefas) de forma direta

localhost £

—————r

APACHE ISIS LOGOUT ABOUT

TODOS FIXTURES

AllToDos DEETE powe : B
OBJECT CATEGORY COMPLETE
[@ Buymix BUY MILK DOMESTIC 15 02-201
0O @ BUYsTAMP. BUY STAMPS DOMESTIC

[0 @ ORGANZE ORGANITE BROWN BAC PROFESSION:

I ® PcKkurL. PICK UP LAUNDR OTHER

000
-3
=)

s
~
7= M T

[‘ WRITE 810 WRITE BLDG POST PROFESSIONAL

POWERED BY: APACHE 1515 ‘

[ru.n: T AJAX DEBLG J

Na figura 4, podemos ver dois itens no menu. O primeiro item de menu
chamado To dos representa o principal modelo de exemplo usado na distribuicéo da
ferramenta Apache lsis, implementado como modelo padrac a ser seguido. O
segundo é uma estrutura de Fixtures, que o framework traz como opg&o para injetar
dados através de objetos de teste codificados pelo desenvolvedor, a fim de simular o
comportamento real da aplicagdo, sem se preocupar ainda com qualquer utilizagéo
de uma camada de dados.

Além disso, a ferramenta faz extenso uso de annotations em Java, recurso
criado a partir da versdo 1.5, para que seja possivel automatizar tarefas atraves de
metadados com palavras chave, iniciados por “@". No caso do Isis, é possivel usar
diversas annotations préprias (@MemberOrder, @Hidden, @Named, @Optional,
entre diversas outras). No caso do @MemberQOrder, a utilizagéo indica ao framework
em que ordem o item que estd sendo especificado no codigo aparecera na tela,
levando em conta a ordem crescente de nameros inteiros maiores que zero.

De modo geral, a ferramenta Isis efetua seu mapeamento entre objetos e
estruturas de tela ao identificar qual o tipo do objeto, e isso é feito principalmente por

27

algumas classes especialistas proprias da APl. Um exempio é a classe abstrata do
framework, chamada AbstractFactoryAndRepository, que € a classe responsavel por
prover funcionalidades dos padrées de Fébrica e de Repositério para classes que
herdem ela, e uma das principais do framework.

Para este tipo de objeto especifico, o Isis considera que este deve ser um
item visivel de menu, caso o desenvolvedor néo identifique o contrario. Isto significa,
que qualquer classe criada pelo desenvolvedor que herda a classe
AbstractFactoryAndRepository, serd aplicada como um item de menu. Este tipo é
uma peculiaridade do framework, e que serve como parametrizador para que seja
feita a transformagéo do objeto desta classe em item renderizado em tela. Uma
annotation disponivel para este tipo de classe € a @Named. Ao verificar as figuras
anteriores, é possivel verificar que o menu corresponde ao seguinte trecho de

codigo das classes que ja vem pré-implementadas:
Figura 5 - ToDoltems herda da classe AbstractFactoryAndRepository

ANamed("ToDos")
public class ToDoItems extends AbstractFactoryAndRepository {

{{ Id, icenName
idverride
public String getid() ﬂ
return "toDoItems™;
L

public String iconName() {

}

return “"ToDoltem";
’,‘ 1

4

Neste caso, esta classe ToDoltems, seré a responsavel por fornecer todas as
acoOes disponiveis para instancias de ToDoltem, e como esta podera ser manipulada.
Neste codigo podemos localizar a annotation @Named(“ToDos”), que é a instrucao
utilizada para dizer ao Isis que este sera o0 nome do menu a ser adotado ao
renderizar as fungdes desta classe Fabrica/Repositério.

Para cada método implementado nesta classe, o Isis ira fornecer um item de
menu, como visualizado na figura a seguir:

28

Figura 8 - Menu do Isis trazendo as agdes possiveis, que estéo implementadas na classe ToDoltems

AbstractFactoryAndRepository

// {{ newToDo (action)
APACHE ISIS PlerberOrder (sequence = “3%)
public ToDoItem newToDo(
iRegEx(validation = "\\w[SR WV 0000 V] wordss

10DOS Haved(“Description™) String description,
ared("Category™) (ategory category,
NOT YET COMPLETE #0ptional
Stipmed(“"Oue by") LocalDate dueBy,
COMPLETE ‘iOptzonal
i("Cost™) Bighecimal cost) {
NEW TO DO final Str:.ng ownedBy = currentUseriame();

return newToDo(description, category, ownedBy, dueBy, cost);
ALL TO DOS }

/7 {{ 21lToDos (action)
@actionSemantics(Of.5AFE)
@lemberOrder (sequence = "4")
public List<ToDoItem> allToDos() {

return allToDos(NotifyUserIfNone.YES);
}

Na pratica, isto significa que temos quatro métodos implementados em nossa
classe de Repositério/Fabrica: NotYetComplete, Complete, NewToDo e AllToDos.

Ao ser acionada a fungdo de incluir nova tarefa(New To Do), o isis ira
renderizar cada atributo e cada método, como campos ou como botdes j& dentro da
tela de edicdo ou criagdo de nova tarefa. Este objetivo é alcangado ao se codificar
o0s itens que serdo campos como parametros de entrada para este método. Abaixo,
as figuras 7 e 8 apresentam as telas de demonstragio de uma inclus&o ou de edicao
para este modelo padrao:

Figura 7 - Tela de cadastro de uma nova iarefa {“ToDo”)
m 15 ‘ﬁ . L:-' wﬂ

r
o. sdll @ ht localhost ke krnarka
e .

o NewTe Do

ixl’;‘i!

APACHE ISIS LOGOUT ABOUT

TODOS FXTURES

@ ToDos

New To Do

———

DESCRIPTION -]

CATEGORY "

DUE BY 16-02-2014

cos

[ox | i

i
WICKET AJAX DEBUG V|‘

29

Figura 8 - Tela de detalhe de uma tarefa ao se clicar em algum item na listagem da primeira imagem

@ Buy milk due by 2014-02-02 =este coe e sosrEveer

Genaral Dependencies Pres «~ o 1|8

DE SCRIFTION
RELATED OHUECT CATRGOSY COMPLETE cost DuE BY ATTACHMENT

CATEGORY *

COMPLETE ¢
[Similar llems 1 A
UPDAYE

Detail

wOTES

ATTACHEENT [WacKET Ruax pieus v

Quando um objeto & escolhido em uma tela, como em uma listagem no
formato de tabela, 0 mesmo é mapeado por completo. O Isis gera campos para as
propriedades, e botbes para as agbes. Como mostrado na figura 8, um To Do possui
as seguintes propriedades: Descrigdo, Categoria, entre outras. E também possui
métodos que irdo prover agdes através de botdes como Update (Atualizar).
Interessante também verificar na figura que possiveis dependéncias, como uma

propriedade que é uma colegéo de objetos, € renderizada como uma tabeta por
padrdo localizada a direita da tela.

30

3. Proposta de Evolugédo de Software

Este capitulo apresenta o cenario atual do software Logistico, o processo
trancorrido para a confecgdo do mesmo e a proposta de evolugéo, através da
utilizagéo da ferramenta em estudo, o Apache lsis.

3.1 Apresentacdo das deficiéncias do software atual da transportadora

A principal proposta para o trabalho é a utilizagéo do framework Apache Isis
em conjunto com o DDD, através de um exemplo real, para dar foco a dois itens
importantes a serem avaliados e estudados: melhorias nos processos de
especificagdo e rapidez na geragéo do software, focando na fase de prototipagéo.

O software atual é detalhado no capitulo 4, no estudo de caso que ird
implementar os itens propostos. Porém, em linhas gerais, foi desenvolvido utilizando
uma tecnologia ndo orientada a objetos, e através de um levantamento simples de
requisitos com o usuario. A especificagao foi feita com fluxogramas simples, e com
coleta de informagbes principais das telas, como dados necessarios e design
desejado das telas através de rascunhos feitos a mao.

A prototipagao inicial foi feita em HTML, o que demandou um trabalho inicial
de desenvolvimento. Qualquer alteragdo nas demonstragbes para 0S USUAriOS
responsaveis sdo necessdarias novas alteragbes no codigo. Foi necessario um
esforgo de desenvolvimento consideravel para construir o protdtipo HTML, além do
comportamento das telas em Javascript, uma vez que ndo foram utilizados
frameworks de mercado para interagéo com as telas.

Ao longo do tempo de construgdoe do software, incluindo fases de construgéo
e testes, houve alguns problemas que se tornaram visiveis com o tempo:

- As telas que ndo eram cadastro basico (Motoristas, Veiculos) e, portanto
necessitavam de muitas agdes, se tornaram grandes e complicadas para constru¢éo
e manutencio ao longo do tempo. E o caso da tela de Relatorio de Viagens;

- A falta de uma tecnologia orientada a objetos, fazia com que estas telas com
muitos detalhes e agdes demandassem relacionamentos de maior complexidade no
modelo de banco de dados, e desta forma causou manutengdes constantes nas
principais entidades que acessavam estes dados;

- N&o utilizar um processo formal ou alguma técnica de andlise e
levantamento levou a problemas na especificacdo das telas, assim como no

31

entendimento, 0 que gerou constante necessidade de manutengdo nas mesmas
telas e entidades;

- A medida que o Software agregava fungdes, a arquitetura adotada se
mostrava ineficiente de forma geral;

O que se tem ao final deste processo é um software com uma produtividade
comprometida, devido as escolhas que foram feitas na utilizagdo de técnicas e
ferramentas ndo produtivas, e de certo modo consideradas ultrapassadas. Por isso,
existe a dificuldade na manutengdo e na evolugdo do software, ndo agregando um
fluxo de trabalho atualizado, em sintonia com as praticas adotadas hoje em dia no
mercado de Tl para a constru¢do de software.

3.2 Domain Driven Design e Isis

Visando um estudo que traga melhoria substancial nas partes falhas
identificadas, foram avaliadas técnicas atuais que estdo em evidéncia na utilizagao
em projetos de desenvolvimento. A utilizagdo de uma abordagem orientada a
objetos para modelagem do processo foi um dos principais objetivos a serem
buscados, principaimente pelos beneficios ja conhecidos neste tipo de paradigma.

Além do paradigma, busca-se uma utilizagdo do mesmo para que se possa
trazer cendarios favoréveis além da representagdo do modelo. Existem hoje, muitos
aplicativos espalhados por grandes empresas que apesar de consiruidos em
tecnologias modernas como Java e .Net, possuem modelagens deficientes em
termos de design e aderéncia com 0s requisitos, ou aié complexas em situagoes
desnecessarias. Um exemplo disso ¢ o uso exagerado de heranga, ou padrdes de
projeto que tém complexidade de utilizagdo grande. Este tipo de situagdo pode
elevar a dificuldade no momento de uma manutengéo, ou até de uma refatoragéo do
cédigo. Isto pode levar a um maior custo no processo de manuteng&o.

Portanto, o DDD se torna uma altenativa interessante, que traz para o projeto
uma base de conhecimento que foi construida através da jungdo do trabalho de
muitos anos de experiéncias de fracasso e de sucesso na implementagdo de
software, e desta forma agrega maturidade de conceitos.

Ndo s6 o DDD, mas a utilizagdo de um framework também facilita este
processo de evolugdo. Atualmente, existem inimeros frameworks que visam atender

32

os mais diversos problemas que podem surgir em qualquer uma das fases de um
projeto de software.

O Apache lsis, através do paradigma do Naked Objects, propde como objetivo
de sua implementagéo, gerar aplicagbes rapidas, modeladas com uma técnica como
o DDD, e que utilizamuma arquitetura como a hexagonal, extensivel e dinamica,
trazendo inimeras possibilidades de configuracdo dependendo da necessidade.
Mas principalmente, isola a parte mais importante do software, que é o modelo de
dominio, ou seja, os objetos que importam para os usudrios e que atendem as
especificagdes recomendadas pelo DDD.

3.3 Enriquecimento do modelo de negdcio

Um dos principais pontos negativos que este projeto como todo apresentou foi
a falta de utilizagdo de algum método de levantamento e especificagdo dos
requisitos do sistema a ser construido.

Para efetuar uma nova modelagem de negdcio, ainda mais para utilizar uma
linguagem orientada a objetos, o DDD surge como uma alternativa que pode trazer
alguns beneficios, como:

- Modelo com riqueza de detalhes e representacéo fiel das situagbes do dia-a-
dia, transformando o software em uma extenséo do trabalho executado;

- Adocdo de Design Patterns e de uma DSL, que auxiliam na criaggdo de um
codigo conciso e expressivo quanto ao negécio;

- Criagéo de uma linguagem Unica e uma cultura rica acima do processo que
estéd sendo representado no modeio;

Um diagrama de classes é uma ferramenta interessante a ser utilizada,
podendo possuir 0 maximo de informagéo possivel para nortear o desenvolvimento e
representar o negécio na notagdo de objetos de forma natural. Evans (2004) adota o
diagrama de classes como principal integrante para estes passos, mesmo nao
especificando o mesmo como obrigatério.

3.4 Framework orientado a objetos compativel com o DDD

Uma vez que o processo de andlise e especificagio tenha gerado um produto
como um diagrama de classes hipotético, & possfvel comegar a pensar em detalhes

33

da implementagdo. Normalmente, existe uma interdependéncia dos processos de
levantamento de requisitos e confecgdo de protétipo. O protdtipo costuma ser um
dos primeiros itens a serem feitos apés a identificagdo dos principais requisitos do
software, mas nem sempre esta acdo é feita programaticamente, sendo comum o
design via criagéo de imagem representando as telas, ou utilizando aplicativos como
o Power Point presente no pacote Office da Microsoft.

Mesmo ndo programando uma interface navegavel para o cliente, um
protétipo como estes em HTML, ou até em imagem, normaimente trazem apenas
uma evolugdo de como a tela ira ficar. Agregam pouco em termos de entendimento
do neg6cio, e representam uma camada fina do software que ainda devera ser
construido, focando demais na representagdo dos dados e até mesmo validagéo de
design. Este processo de prototipagdo pode levar um tempo consideravel, e desta
forma ndo agregar nada além de uma geragdo de interface para aceitagdo do
usuario.

Ao se utilizar uma ferramenta como o Apache Isis é possivel programar as
classes iniciais do software, que ja estariam definidas apés o processo de confecgao
do modelo de negécio, e obter um resultado rapido em termos de prototipacéao.
Desta forma, o processo de andlise e definicdo do modelo viria obrigatoriamente
antes da prototipagéo, uma vez que o framework precisa desta definicdo para a
geracdo da interface. Como proposta, o DDD pode ser adotado para a definigéo
deste modelo. N3o é necessario efetuar todas as iteragdes da analise para iniciar um
prot6tipo navegavel para o cliente, mas sim as principais entidades a serem
utilizadas. Desta forma, ganha-se dinamismo, e maior interesse do usuario na
participa¢ao do processo.

Este protétipo gerado seria uma representagéo do trabalho feito ao se aplicar
o DDD, e quanto maior a fidelidade em termos de detalhe, maior a fidelizagio do que
sera apresentado para o usudrio em termos de tela, ou seja, através de um processo
agil, é possivel atacar duas frentes no ciclo do desenvolvimento.

A parte interessante desta aplicagdo, € que em nenhum momenio 0s
desenvolvedores precisam codificar itens de tela. O Isis tem por padréo a utilizagéo
do Apache Wicket, que é um framework de especificagéo de telas, e que possui um
porifélio de componentes amigaveis no mesmo padrdo enconirado em aplicagdes
feitas na Web. O Isis ird efetuar o mapeamento, e suas APIs internas seréo

34

responsaveis pela geragdo desta interface, deixando uma transparéncia entre
modelo de classes e a apresentagdo destes como itens de tela.

Com isso, é possivel evitar abismos entre as especificagdes de negocio, as
especificagbes técnicas de desenvolvimento e o cédigo desenvolvido. E comum
haverem niveis diferentes de documentagdo nos projetos de desenvolvimento. Isto
causa uma situagio indesejavel, aonde se tem diversos diagramas criados que vao
cada vez mais se aprofundando desordenadamente, e desta forma aumentando a
complexidade. Existe um momento em que a documentagdo sofre com falta de
correspondéncia entre cada artefato, aumentando a dificuldade para atualizagéo e
evolugdo. Isto pode facilmente levar a uma obsolescéncia, transformando a
documentacdo em um artefato desatualizado ao qual evita-se efetuar manutengéo.

Evans (2004) reforca um conceito, que denomina alguns modelos de software
como anémicos. Um modelo anémico é o modelo que tem em sua representagéo,
um conjunto de objetos sem nenhuma ou pouca responsabilidade, ou agdes. Sao
objetos que foram identificados em fase de levantamento como em um caso de uso,
porém sem terem a responsabilidade de executar nenhuma acgéo. No final, objetos
como esses acabam se tornando ariefatos com muitas propriedades, servindo
apenas como portadores de dados.

A situagdo contraria também ¢é verdadeira. Objetos que acumulam
responsabilidades demais, e desta forma diminuem drasticamente o nivel de coeséo
do modelo. Baixa coeséo é um problema constante em modetos que tentam resolver
muitos objetivos com poucas entidades.

Estes dois problemas apresentados, estdo entre muitos que podem levar um
software a ser criado e evoluido de forma prejudicial ao longo do tempo. Espera-se
neste trabalho, estudar as técnicas capazes de minimizar situagbes como essa, €
propor formas de se agregar um maior nivel de qualidade para o produto final.

Com a dinamica apresentada pelo Apache Isis, um objeto que esteja criado
de forma balanceada com uma distribuigdo equivalente entre dados e agbes, ird
servir de um subsidio importante para a criagdo de uma tela completa em termo de
campos a serem preenchidos (dados do objeto), e possiveis botdes ou componentes
acionaveis (a¢des/métodos).

35

4. Avaliacéo dos resultados

4.1 Avaliagao do Naked Objects

Com o objetivo de auxiliar na definigdo do Naked Objects, Pawson (2004)
executou trés estudos de caso em sua tese de Doutorado. Um deles foi através da
implementagéo de novos sistemas dentro da instituigdo DSFA (Depariment of Social
And Family Affairs) um departamento do governo da Irlanda, que tem como
responsabilidade administrar servicos sociais. Outro estudo, foi a execugéo de dois
projetos que utilizaram o Naked Objects para a empresa Safeway, que atua no
segmento de varejo, sendo a quarta maior rede de supermercados no Reino Unido.
Nestes dois primeiros estudos, o objetivo foi a renovagdo de sistemas legado que
foram construidos em tecnologias e linguagens procedurais. E por Ultimo, a
utilizagdo de uma aplicagdo chamada CarServ, proposta por Haywood e Carmichael
(2002), que gerencia uma prestadora de servigos de mecénica para automoveis em
geral.

Estes estudos de caso foram utilizados para demonstrar diferentes pontos a
favor da utilizacao do Naked Objects. Tanto no caso da DSFA, como na Safeway o
foco esta na avaliagdo do framework de uma perspectiva qualitativa. Para isto, o
autor aplicou diversos questionarios aos participantes com cargos diferenciados que
participaram de todo o fluxo, desde a identificagdo dos requisitos, até a prototipagao
ou construcéo do sofware. Estes questionarios vieram a comprovar gue a aceitagéo
do conceito foi positiva e trouxe beneficios para a empresa que estava aplicando,
bem como para o processo de desenvolvimento e para o software em si.

Em ambos os casos, 0s resultados tiveram como consenso geral avaliagbes
positivas. Os principais itens que foram classificados como tal para o estudo da
DSFA, foram:

e Forte evidéncia de agilidade de utilizagio/operagao;

e Alguma evidéncia de agilidade estratégica melhorada;

e Alguma evidéncia de melhoria da comunicagdo entre usuarios e
desenvolvedores, mas um sentimento de maior e melhor prototipacao;

¢ Nenhuma evidéncia de um ciclo de desenvolvimento rapido da aplicacdo como
um todo, porém isso pode ser atribuido ao fato de em paralelo ter ocorrido a

36

tarefa de desenvolvimento de um framework que aplicou o conceito Naked
Objects;

e Ciclo de desenvolvimento rapido durante a fase de prototipagao;

e Comunicagdo aprimorada entre os usuérios e os desenvolvedores;

¢ O periodo de exploragdo, quando usado com o Naked Objects e um framework
de implementagéo do conceito apropriado, pode ser altamente efetivo.

Para o Ultimo case, Pawson (2004) ¢é direto ao tentar comprovar
guantitativamente a aplicagdo do Naked Objects, levandc em consideragéo as
seguintes caracteristicas constantes e uma caracteristica variavel na aplicagéo do
estudo:

» Variavel: Alterag&o do paradigma, projeto inicialmente feito em camadas MVC, e
na segunda verséo utilizando o framework Naked Objects;

¢ Constantes: Mesmo modelo de negécio inicial e requisitos, mesmo autor do
modelo e responsével pela programagio das duas versdes do sistema. Para este
caso, Dan Haywood na época ajudou a conduzir este estudo.

Através de iteragGes de desenvolvimento, e analise comparativa do resultado das
duas aplicagbes, foram avaliados os resultados do produto final. Como resultado,
temos as seguintes tabelas extraidas da tese de Pawson (2004):

Tabela 1 - Tabela retirada da segdo 7.4 da tese de Pawson{2004)

Nimero de | Numero de | Media de Linhas de Meédia de
Classes Meétodos Meétodos por| Codigo Java | Linhas por
Classe (LOC - Lines] Método
of Code)
CarServl 190 788 4.1 7304 93
CarSen? 27 230 8.5 1726 7.5

Fonte: Pawson (2004)

37

Tabela 2 - Comparagéo dos indices acerca de classes externas para cada estudo de caso

Classes externas invocadas Meétodos unicos em

dentro do codigo da classes

aplicagao, externas invocados,

ignorando classes java.lang ignorando

e java.util java lang e java.util
CarServl 142 411
CarServ2 18 56

Fonie: Pawson (2004)

Ao analisar as tabelas acima colocadas, pode-se perceber que houve uma
drastica diferenca entre valores. CarServl diz respeito & primeira aplicagao,
desenvolvida por Haywood (2002), e refeita para o estudo. CarServ2 diz respeito a
segunda aplicagéo, utilizando o paradigma e o framework Naked Objects, também
por Haywood (PAWSON, 2004).

A primeira tabela traz a diferenga entre o nimero de classes, o nimero de
métodos, a média de métodos por classes, total de linhas de cédigo Java e a media
de linhas por métodos. A segunda tabela traz o numero de classes externas
utilizadas no codigo da aplicagdo e os métodos de classes externas chamados,
ignorando chamadas de bibliotecas Java padréo, como Java.lang e Java.util.

Nos dois casos, foi possivel verificar como o Naked Objects transforma as
caracteristicas do projeto, trazendo menores indices interessantes, como o0 menor
namero de classes, métodos e linhas de cdigo, média de linhas por método(Tabela
1), assim como menor nimero de classes externas e métodos de classes
externasi(Tabela 2). Estes indices, podem significar uma redugio de esforgo de
construgio e manutencdo, e até de custo na implantagdo de projetos de software. O
ponto interessante, é destacar que um processo de construgdo ou manutengao
poderia ser beneficiado por esses resultados, com a simplificagdo do modelo
especificado e implementado.

38

4.2 Aplicagdo da proposta para o software de controle logistico atual néo
Orientado a Objetos — Apache Isis em acdo

Com o objetivo de aplicar os conhecimentos adquiridos via leitura do principal
material, serd apresentado uma aplicacdo pratica do Apache lIsis. Para esta
aplicagéo, é utilizada o software ja existente, no qual o autor desta monografia atuou
como analista e programador, e rapidamente referenciado no capitulo 3.

Trata-se de um projeto para uma empresa de pequeno porte de transportes,
que necessitou de um sistema que controlasse as viagens que os motoristas faziam
de forma a informatizar um processo feito manualmente. Este processo era feito
através de anotagdo em uma lista impressa de tempos em tempos, bem como
também era manual o gerenciamento de cadastros de Motoristas, Veiculos, entre
outros.

Inicialmente, este sistema tinha como objetivo final, fornecer um sistema
completo que contemplasse todo o ciclo do transporte efetuado, ou seja, cobrindo
desde o registro da demanda, o atendimento do motorista, o fretamento do servigo a
ser prestado, o controle financeiro do mesmo com integragéo de caixa, a geragéo de
relatérios e conhecimentos de transportes a serem impressos e emitidos aos
clientes.

Devido a alguns entraves, o projeto ndo evoluiu tanto quanto deveria. O
principal motivo foi a complexidade a ser traduzida em software, integrando diversos
papéis de executores dentro da empresa, considerando também o trabalho de
reformulagdo de todo processo executado. A aplicagdo ndo poderia desviar do
principal objetivo de exercer, exatamente, o mesmo tipo de trabalho que uma
planilha Excel personalizada pelo usudrio poderia fazer. Os usuérios dependiam
intensamente dessas planilhas, utilizando de forma extensa os recursos da
ferramenta Office. Porém, ainda sim era importante a construgdo de software,
trazendo uma unificagio de conhecimento, padronizacéo de entrada de dados, além
da centralizacdo e seguranga da informagdo. Entre os usudrios que seriam
beneficiados com o sistema, estavam um analista financeiro, um operador logistico e
o dono da empresa, que faz o papel de coordenador logistico.

Devido 3 criticidade do modelo de atendimento ofertado, e a estrutura enxuta
do departamento que controlava esse processo, um sistema muito avangado deveria
ser desenhado. Isto causaria aumento no custo do projeto para a empresa, e ©
consultor ndo poderia ofertar sem uma equipe maior de desenvolvimento. Ambas as

39

partes decidiram deixar parte do processo com o usuario como estava, apenas
complementando com a funcionalidade principal de controle de viagens, o que
simplificou o projeto.

O software atual de controle logistico foi desenvolvido em linguagem
procedural, dentro de uma arquitetura simples de aplicagbes web com trocas de
informagéo entre um servidor de aplicagdo Microsoft IS (Internet Information
Services) e um banco de dados de uso livre e popular, MySQL, além de uma
interface HTML acessada via browser pelos usudrios. A tecnologia escolhida foi o
Microsoft ASP (Active Server Pages), juntamente com utilizagéo de Javascript para
manipulagdo desta interface e requisicbes assincronas via AJAX (Asynchronous
Javascript and XML) .

A especificacao da aplicagdo pode ser resumida da seguinte forma:

Um sistema que deve controlar as viagens feitas pelos motoristas funcionarios
ou terceiros, que vao executar um servigo de iransporle de cargas para clientes
externos. Esta viagem, no momento da execugdo deve apreseniar data de saida,
bem como o nome do motorista que a esta executando, qual veiculo ira utilizar (em
caso de terceiro, o veiculo particular), origem/destino da viagem, total de frete a ser
cobrado em caso de ser motorista prestador de servigo, adiantamento dado ao
motorista referente ao pagamenio e saldo a pagar. Outras informagdes secundarias
serdo necessdrias, como numero do conhecimento que serd atualizado
posteriormentes, numero de Pé&gina Branca (relatdrio interno que descreve a
viagem) e informagbes como responsédvel no cliente e ceniro de custo da empresa
cliente.

Para que este controle funcione, é necessario o prévio cadastramento de
Motoristas (funcionarios e prestadores de servigo utilizam o mesmo cadastro, sendo
classificados por um campo de tipo de informagdo), Veiculos da empresa e
Empresas cliente.

Seguem as figuras 9, 10 e 11 ilustrativas do sistema atual:

Figura 9 - Tela de Relatdrio de Viagens

L e e e+ N .

d B eamen cU-n N <A

Coe=s

[Tt | o {| Nt | S8 -

Relatorio de Viagens)

Dt -

g1 L huideis || Ipana o Bunncan | '
o Hors Momista Whow Trecho o Valor frete Adesl 5aM ResHRGe Fermatinie CEAC

Swletiona - oee {00 r]
Conire 60 Canle Deta Solciticie Sticiunbe
Sabvar

s (T 0 SR 2 s me = o5 [[S 1
VIO s MO0 3. 3w 82 0 we M r X
CUDLRCIZ 1400 memadiid vaie ¥ e W 10 2500 % f X

1

[VOE ADMIN - Lista de Veiculos

" B locathost 2090, Iista. es:ic e C

e

[[o | o | Ro—

Lista de Veiculos Cadastrados

i |

WECQ ABERTA GHS8453 Patnmbnio I

MUNCK YRT7364 Painmanio

MONTANA EFH3456 Patriménio

40

Ix u Feiguue Segura Foll 10 MchAfee. € [hd
p— e ————

41

Figura 11 - Cadastro de Veiculos

YOE ADMIN - Cadastro de Motoristss - d
localhost | cadaztroVen u Jye C @" FEgL o P n' + H

& n e
Q-
Cadastro de Velculos

Descricho IVECO ABERTA

Placa GHSE453 |
Pratiménio Selecions +
Cor

BRANCA

4 = "

: @ Py chine 0

4.3 Domain Driven Design aplicado ao problema

Com o sistema atual funcionando, em processo apenas de melhorias, pode-
se considerar que existe uma base de conhecimento razoavel a se iniciar no
processo de exploragio.

Uma vez que 0 modelo anterior era focado em casos de uso e em tarefas,
ainda sem utilizagdo do paradigma orientado a objetos, a exploragdo dos conceitos
de outra perspectiva se fez necessaria. Desta forma, foram executadas algumas
entrevistas com o usudrio principal do sistema.

O modelo inicial, levando em consideragéo a descrigio apresentada no inicio
deste capitulo, e o levantamento que foi executado novamente, é representado na
Figura 12 através um diagrama de classes.

42

Figura 12 - Diagrama de Classes com a aplicagéo do modelo de dominio

feeeemmenes Conhecimento
Fur-n'nl.!ilr_I_q;{" = r
|, - 3 {Seca
y e
faces> A
.
I[it
Viegens
[1 + novaviagemidaia Dete hore Sting trecho Sting observacao Stang) void
I ; + gerarFormmuanofvagem Viagem) void
| - _f{ \
] 1 / Fx'
Agregagio Viagem A
/ A\ ,
/ \ _Agreyasho Frete
| f
; o / P N
Soo e . Entidade : f FreteTerceiro ; Objsto Vol
i Veleise / vekorToial foat Pagamento '
Mototista -placa Sting / - pagamenios]] Fagemanto - adantamento booiasn
~neme Sting .descncao Smng T / - —
-cm long ~cor Stng | | + gerarPagamento(] void
.apo Tipohlotorista -bpo Sting / >
/
- - Rz Endace
Viagem
- data Date
-hora Siing
mokiste : Motonste
. ObyetoValor | -velcwo Veiculo
...... . TipoMotorista -trecho Stnng
r .« Enfidad - observaceo Shing
EmprasaClients - ipoDescNcaoNing -frate FratgTercewo
= e -saido double
'r?'_m‘ e - centiocusto Sng
Rk 0 i = 1 - dataSoke Date
g | - schciants Sting
==t + parPagamentc{valor ficat) wod

A principal classe identificada é a Viagem na figura 12. E a base para que o
sistema funcione e é o principal controlador do processo da empresa para que 0
sistema faga o que se propde, gerenciar as viagens. E classificada como uma
entidade, pois cada viagem € Unica, e tem como uma identidade propria, como 0
nimero de conhecimento para mesma e o numero de formuldrio. Outra classe
interessante é a Viagens, que faz neste caso o pape! de Repositério/Fabrica de
Viagens.

Algumas outras classes secundarias foram criadas como Motorista e Veiculo.
Para este estudo, ndo foi desenvolvido um diagrama de classes completo. Para que
isto fosse atingido, seriam necessarias inimeras iteragdes com o usuario, € isto
demandaria um esforgo ndo necessario para esta prova de conceito acerca da
prototipagdo via Apache lIsis. A ideia principal é verificar a facilidade e rapidez com
que o protétipo foi gerado, justamente considerando fases preliminares de
especificagdo de um modelo de dominio.

43

4.4 Naked Objects/Apache lsis aplicado ao problema

O resultado esperado para esta aplicagdo € um protétipo ou até aplicativo em
passos iniciais que aborde de uma maneira direta 0 mapeamento de comportamento
entre entidades e interface.

O primeiro passo foi implementar as principais classes encontradas no
modelo apresentado acima: a entidade da Viagem, e seu relacionamento com o
objeto do tipo Fébrica/Repositorio Viagens. Neste caso, & possivel fazer uma
mapeamento légico entre a Viagem e a classe ToDoltem (item tarefa) padréo do Isis.
O mesmo pode ser observado entre a classe Viagens e a classe ToDoltems (itens
tarefa). Desta forma, a aplicagéo inicial foi totalmente baseada no padréo ja utilizado,
ctiando as novas classes com os atributos e métodos corretos, previstos no modelo.

Além disso, foi também feita uma implementagdo da classe Veiculo e como
ficaria a tela de edigéo e inclusdo de uma nova instancia. Para este desenvolvimento
como citado acima, foram usadas as classes modelo do framework. No caso, como
foram implementadas duas classes de Entidades, como a Viagem e Veiculo, foram
geradas funcionalidades de edigdo e inclusdo para cada uma delas, e tela de
consulta com uma listagem em formato de tabela.

Para que se tenha acesso a estes itens da lista ou funcionalidade de menu
para acessa-las, foram implementadas classes do tipo
AbstractFactoryandRepository. Desta forma, o protétipo apresenta dois itens de
menu, um através da classe Viagens com a annotation @Named(“Viagens”), para
que 0 menu trouxesse esta descrigdo e a outra classe Veiculos, responsavel pelo
item de menu de mesmo nome, com a annotation @Named (“Veiculos).

Neste pequeno processo de desenvolvimento, também foi necessaria a
alteragdo em outros itens que fazem parte do Isis, como no arquivo isis.properties,
que contém propriedades importantes para o funcionamento da aplicagéo. Um
exemplo é a especificagdo de qual o tipo de implementagéo para uso de persisténcia
e consulia de dados. Existem algumas opgbes, como a utilizagdo de classes em
meméria, ou fazendo a conexdc com um banco de dados. Ouira possivel
configuragéio é a especificagdo das Fixtures, classes que servem de apoio para 0s
testes, e que sdo responsaveis por injetar os dados para a prototipagdo. No caso
deste aplicagéo, foram utilizados objetos de Fabrica/Repositdrio do tipo Fixtures, que

44

geram objetos ou até colegbes dos mesmos com dados ficticios, possibiliiando a
execugéo do protétipo com dados pré-existentes.

Para este estudo, foram necessarias algumas ferramentas importantes, como
o Eclipse. O Eclipse é um software popular para o desenvolvimento de aplicagbes
principalmente em Java, classificado como uma IDE (Integrated Development
Environment). Além desta ferramenta, foi utilizado também o Maven. Este é uma
ferramenta de automatizagdo de instalagdo do software, que visa padronizar o
projeto com suas dependéncias e através do mesmo, executar o comando de
instalacdo instantanea.

O Isis possui sua implementagédo baseada no Maven. Neste caso, este passo
de instalagéio é executado através de comandos do Maven apontando para o proprio
site do Isis, que efetua o download de todo o cédigo fonte através das instrugdes
que estdo pré configuradas no framework. Este passo & essencial para a instalagao
correta do framework no computador do executante.

Apbs o desenvolvimento das classes no periodo de 1 semana, foi possivel se
chegar ao primeiro protétipo que era o objetivo desta aplicagéo. O processo foi
répido, e com apenas alguns erros gerados pelo conhecimento inicial do autor da
ferramenta como um todo, foi simples a aplicagdo desta iteragcdo. O resultado da
aplicagéo pode ser avaliado nas figuras 13, 14 e 15:

Figura 13 - Tela da listagem de viagens prototipada via Apache Isis

Todas Viagens . oAt . - 3 s e
€ Incalhost v det . [+ 2 - 4+ Al

APACHE ISIS LOGOUT ABOUT

VIAGENS VEXULOS OPERACAD FIXTURES SERVICE VEKCULOS FIXTURES SERVICE

Todas Viagens

DATA VIAGEM HORA TRECHO OHSERVACAD CENTRO CUSTD DATA SOUC SOUCITANTE
D viacEm 1000 TRECHO AGEM NUMERD CC12316 FULAND Tau
HU.. CUARU 1
[VIAGEM 20-02 1200 TRECHO VIRACOPOS/GUARULHOS VIAGEM NUMERD CC12318 X FULAN
HU. 2 MARHCA
POWERED BY: APACHL 15) WICKET AJAX DEBUG

y - o PrEEED - |

: € u
- 1 viagem numero 1

General

lacathost

ket

| DATA VIAGEM ™

HORA *

1000
TRECHC *

Trecho guaruine/ conganh
OBSERVACAC *

Vio numeo 1

CEHTRO CUSTO -

12316

DATA SOLIC * i

SOLICITANTE *

Fulens TAM

chet

Figura 14 - Tela de Edigao de uma Viagem

¢ brnarkakle o1g g erwrch €t w pages entt,

20-02-2014

2004

| [Todos Veiculos

| € M

localhost

APACHE ISIS

VIAGENS VEICULOS

Todos Veiculos

) xya-6589
@ rA-vere

POWERED BY: APACHE 1515

OPERACADO FIXTURES SERVICE

VEICULOS FIXTURES SERVICE

PLACA TIPO VEICULO
XYAE580 HYUNDA MR BRANCO THIRD-PARTY
Fla-8g7¢ VOLVO 660 PRATA PATRIMONIO
WICKET AJAX DEBUG
fi;'ﬂ s o _ 3 Mchfer. O B
— _—

45

46

As imagens mostram a evolugéo das telas para uma interface amigavel e
com componentes com design moderno. Porém, o que deve se destacar, € a
correspondéncia entre os objetos implementados no cédigo e renderizados em tela.

Nas imagens 13 e 15, visualiza-se as figuras que contém os objetos de tipos
como Viagens e Veiculos, sendo esse resultado motivado pela codificagdo de
classes do tipo Fabrica e Repositorio, que contém métodos que listam os objetos
que serdo trazidos de uma fonte de dados.

Na imagem 14, identificam-se os campos que serdo utilizado para atualizar o
objeto em si, neste caso uma Viagem. Ao se comparar esta imagem, com o modelo
criado utilizando o DDD, pode-se verificar que existe uma correspondéncia direta
dos dados especificados e o que foi renderizado na tela. Todos estes campos
disponiveis, estdo presentes como atributos da classe Viagem e séo especificados
através das configuragbes no codigo desta classe, através das annotations
disponiveis para esta finalidade.

Assim, foi possivel testar a geragdo rapida de telas, utilizando-se apenas do
modelo especificado, a codificagdo das classes principais do dominio, como as
classes Viagem(Entidade) e Viagens(Fabrica/Repositério) e o preenchimento de
classes de testes para a geracio de dados nos objetos em memoria. Nao foram
necessarias codificagbes auxiliares em termos de interface. Isto traz a praticidade de
gerar o prototipo com facilidade codificando apenas em Java.

Para um estudo completo da ferramenta, seria necessario executar varias
outras iteragbes do projeto além da fase da prototipagéo, principalmente para atingir
os objetivos principais dos conceitos revisados no capitulo 2.

Uma fase seguinte interessante, seria destilar o modeio o quanto fosse
necessario para que o detalhamento das regras de negécio fosse se apurando com
maturidade gradual, o que colocaria em prética os principais pontos do Domain
Driven Design. Também seria interessante, explorar mais conceitos e formas de
parametrizar a aplicagdo de regras no Isis, como campos que devem ficar inativos
dependendo de alguma situacéo, ou a interagéo entre objetos do tipo Entidade e
Objeto de Valor, ou até um Servigo.

Devido ao contexto de testar a aplicabilidade inicial do Isis, n&o foi possivel
executar maiores exploragdes de como o mesmo atende um modelo de negocio
completo, e suas particularidades.

47

4.5 Avaliacao dos Resultados

4.5.1 Evolugao da especificacio

A evolugdo da especificacgo notoriamente se mostrou de maior utilidade para
possiveis implementages futuras e melhor entendimento dos processos. A
representagéo utilizando o paradigma Orientado a Objetos, muda drasticamente 0s
artefatos apenas interpretadores de agbes, e cria um conjunto de conceitos que
agregam maior valor a especifica¢go técnica.

Consideradas as regras do DDD, foi possivel identificar e classificar as
classes que teriam maior correspondéncia com o negdcio, fora a classificagao
utilizada entre Entidades, Objetos de Valor, entre outros. Este passo, mesmo que
néo tivesse precedido a aplicagéo do Isis, poderia, de forma interessante, fornecer
um modelo para qualquer tecnologia Orientada a Objetos, como por exemplo em
Java utilizando modelos arquiteturais como MVC padrao, através de frameworks de
mercado.

A iteragdo rapida na geragdo de um modelo inicial também foi vantajosa.
Poder utilizar regras que ajudam na definicdo de tipos de objetos, fez com que
houvesse uma profunda reflexdo para esta identificagdo, o que forgou um trabalho
de maior relevancia e atengdo a detalhes ao se trabalhar com objetos.

4.5.2 Prototipacdo e Fase Inicial

O Apache Isis é baseado na arquitetura hexagonal, o que facilita a adaptacao
de seu funcionamento para diferentes implementagbes de um dado tipo de
componente. O préprio exemplo disponivel para avaliagéo (aplicagédo ToDoltem), ja
contém trechos de c6digo comentados, com as diversas opgdes disponiveis.

Um exemplo prético é a persisténcia e utiliza¢do dos dados quando ainda em
fase de prototipagdo. Uma delas pode ser feita através de gravagio destes dados
em memoria, ja outra opgéo seria aplicar o framework DataNucleus, que impiementa
um o padrdo JPA/JDO. Através do DataNucleus, é possivel simular uma situagao
mais préxima de uma possivel impiementagdo de um dado banco de dados,
utilizando a persisténcia via mapeamento do tipo objeto relacional do JPA/JDO.

Outro item interessante, é o fato de que, utilizando o Isis, é possivel exercitar

a implementagdo das classes, mesmo que ainda em fase de evolugao do modelo.

48

Isto faz com que seja possivel uma refatoragdo natural de codigo Java e uma vez
que ha o mapeamento direto destes para a interagéo do sistema, pode-se concluir
que o funcionamento e a coeréncia do modelo de negécio com © codigo
implementado ganham em qualidade.

Em um processo normal de implementagdo de uma aplicagao, indiferente
sendo em Java ou ASP e indiferente de qual framework usado para camadas View e
Controlier, necessitaria de horas de esforgo de um designer ou até mesmo de um
programador front-end, para especificar e desenvolver um protétipo para validagdo
com o cliente. Este processo poderia demorar mais do que o previsto no
planejamento. Como o Apache Isis tem uma geragao automatica de protdtipo,
através apenas da codificagdo das classes principais, hd um beneficio para o
processo de andlise de levantamento de requisitos. A agilidade com que foi possivel
implantar este proidtipo estudado é um item a ser enaltecido.

4.5.3 Comparagdo da implementagao

Ao efetuar uma comparagio enire os dois processos de analise e
implementagéo, pode-se destacar alguns aspectos imporiantes: diferentes formas de
se explorar o problema, diferentes processos de codificagdo, diferencas arquiteturais
entre paradigmas e tecnologias e diferentes niveis de dificuldade para novas
iteragbes de desenvolvimento ou manutenag&o do cddigo.

Explorar o problema: ao se pensar numa aplicagéo Web padréo como era
no auge da utilizag&o de paginas dinamicas em ASP, era comum que se tivesse uma
grande preocupagdo com a interface e como seria este desenvolvimento.
Particularmente no ASP, forga-se uma extensa e detalhada implementagéo de
codige HTML e Javascript, para a colaboragéo dos dados entre o ASP em sie a
camada de apresentagdo. Ao se adotar um framework como o Apache Isis, que
acumula outros frameworks como o Apache Wicket, existe uma melhoria na
qualidade visual da camada de apresentagdo, e um aumento de produtividade ao se
manipular seus componentes internos ao invés de programar cada item HTML. Por
estas diferengas, explorar o problema para o Isis significa pensar em classes, para
um ASP seria, como sera o fluxo dos dados e como estes se apresentarao.

Processos de codificacdo: ao se focar numa aplicagdo Web como a
descrita, a preocupagio se divide em HTML, cédigo ASP dinamico, composigio de

49

dados e como juntar estas pegas. Desta forma, as regras de negécio trancendem
por diversas camadas, além de se dispersarem por trechos ndo necessariamente
coerentes para o negécio. Ao se avaliar a aplicagdo do lIsis, o processo de
codificagdo se limita apenas ao Java e a orientagdo a objetos. Outro ponto
importante, é adicionar ao processo de aprendizagem, particularidades da
ferramenta Isis, que acaba sendo limitada a sua comunidade de desenvolvedores,
ao invés de ter féruns consolidados e espathados pela internet, como € 0 caso do
ASP, ou até para Java utilizando solugbes populares de mercado, como o Spring
MVC.

Diferencas arquiteiurais: nao pode ser negado o fato que o médulo que
gera uma aplicagdo no Isis é intrisecamente muito mais complexo que uma
especificacdo simples de tecnologias como o ASP. Enquanto que o Isis possa ser
comparado a um robd que desenvolve sob demanda baseado em parametrizagdes e
codificagdo Java, uma aplicagdo Web simples promove uma maior simplicidade
arquitetural e um maior contaio entre o que o desenvolvedor pode alterar em uma
aplicagio em seus diversos aspectos. Um exemplo disso, é a possivel manutencéo
em um componente HTML na tela, que rodaria em qualguer browser, contra um
componente do Wicket, que implementa um cédigo HTML pré especificado, e que
aceita nimeros limitados de parameiros podendo diminuir a flexibilizagao de uso.

Dificuldades nos processos de evolucdo e manutengédo: fica evidente,
mesmo levando em consideragdo que a segunda aplicagdo do sistema em estudo
era apenas um protétipo, que uma manutengdo na aplicagao gerada pelo Isis, requer
menos tempo, menor complexidade e menor linhas de cédigo a serem incluidas ou
alteradas. Qualquer alteragdo na aplicagdo em versao ASP, custaria varias linhas
de codigo, em diversas linguagens, e em pontos disseminados pelo sistema.

importante também levar em consideragdo a diferenga de idade das duas
tecnologias e paradigmas.

4.5.4 Consideracdes do Capitulo

Apesar de nio terem referéncias diretas entre o trabalho de Evans(2004) com
o DDD e dos autores do Naked Objects, Pawson e Matthews(2002), pode-se
perceber a afinidade entre as propostas de cada. Os dois convergem nas seguintes

quesides:

50

O projeto deve iniciar através de um processo de iteragbes fortemente
direcionadas pela participacdo de detentores do negocio juntamente com a
equipe técnica, com uma participagéo valiosa desde o inicio visando otimizar
a implementagdo, em questdo de riqueza do modelo e beneficios na
manutengao;

Entendem que técnicas do manifesto agil (XP Programming, Scrum, entre
outros) tendem naturaimente a ser bem vindas na execugéo desta fase;
Ambos defendem riqueza no modelo, que deve expressar de forma fiel o
negdcio, e aproveitando todo o potencial que o conceito da Orientagéo a
Objetos pelo menos um dia mostrou ao ser materializado em linguagens de
programacédo como Simula, Smalltalk, Java, C++, C#.

Defendem de alguma forma a utilizagdo do MDD (Model Driven Design),
técnica que prové a geragdo automdtica de partes do software mapeadas
diretamente de um modelo, como um Diagrama de Classes da UML. No caso
de Evans(2004), de forma mais timida como proposta apenas. No caso de
Pawson e Matthews(2002) e Haywood(2009), substancialmente, uma vez que
o Naked Objects e o Isis explicitamente utilizam desta técnica para sua
geracao automética;

Um dos responsaveis pela evolugdo do Naked Objects em suas primeiras
implementagdes como framework open source para o atual Apache Isis, Dan
Haywood, mescla os dois conceitos, convergindo inclusive para o tema aqui

executado.

51

5. CONSIDERACOES FINAIS

5.1 Contribui¢gées do Trabalho

Com o desenvolvimento deste trabalho, foi possivel explorar uma ferramenta
com uma proposta inieressante, ndo s6 do ponto de vista da area de
desenvolvimento, mas também de fases como a prototipagdo, levantamento de
requisitos e andlise.

A contribuigdo principal é fazer uma avaliagdo do produto atualmente ofertado
como solugdo de uso livre, e além disso mostrar como é possivel combinar conceitos
poderosos envolvendo um paradigma como a Orientagdo a Objetos, o Domain
Driven Design e o Naked Objects. Este tipo de estudo vem reforgar a utilizagéo de
uma ferramenta como essa, independente do objetivo. Mostra que de forma
simplificada pode existir uma minima contribuigdo para qualquer parte do processo,
mesmo que o Isis seja usado para prototipar, ou até organizar uma implementagao
inicial de classes Java.

Para o processo de prototipagéo, pelo tempo que durou a implementagéo das
novas classes no lIsis, ficou claro que o processo ganha em produtividade e
qualidade, podendo fornecer redugdo em cusios para aplicagdo de méo de obra
nesta fase e melhor visualizagcdo para os usudrios em uma fase adiantada.

Para o processo de desenvolvimento, o Domain Driven Design vem sendo
aplicado de forma efetiva e direcionada pelo Isis, pode-se destacar a combinagéo da
riqueza que esta implementagéo do dominio pode oferecer, trazendo uma interface
satisfatéria para o usuéario.

Através deste estudo em um contexto geral, houve uma agregagio
substancial de conhecimento na fase de pesquisa, leitura e conhecimento dos
conceitos estudados. A abordagem do Domain Driven Design foi aprimorada, o
conceito do Naked Objects conhecido mais a fundo, revelando-se um conceito
poderoso e interessante do ponto de vista dos paradigmas atuais.

O Apache Isis, mostrou que é uma ferramenta que pode ser profundamente
explorada e testada para avaliagio em projetos reais, levando beneficios e
tecnologias de ponta conduzidas por profissionais que sdo reconhecidos na area de
tecnologia global e nos meios de pesquisa.

52

5.2 Trabalhos Futuros

Os trabalhos futuros possiveis para a exploracdo do Isis com maior
profundidade sdo diversos. O principal deles seria continuar neste fluxo de
iteragdes, evoluindo a aplicagao até que ela pudesse servir de substifuta para a
versdo atual. Uma especificagdo completa de um aplicative teria muitos detalhes
interessantes a serem analisados e testados para confrontar os beneficios
defendidos pelos autores pesquisados.

Um estudo interessante seria pesquisar e conhecer mais a fundo como o Isis
funciona internamente, e de que forma ele efetua este mapeamento entre objetos
Java e campos e componentes de tela através do Wicket. Este tipo de pesquisa
estaria focada na parte de arquitetura da ferramenta, e consequentemente
demandaria um maior estudo das ferramentas Apache Wicket, DataNucleus, entre
outras. Este seria o principal atrativo para o autor, despertando o interesse em
conhecer como o Isis foi especificado, como foi seu projeto de arquitetura, e quem
sabe conseguir atuar profissionalmente de forma oficial com o mesmo.

Por {ltimo, seria interessante também um engajamento maior no projeto,
podendo no futuro fazer parte de possiveis processos de melhoria conduzidos por
autores como o Dan Haywood, gque é figura ativa no férum por email do Isis, e
incentiva que os participantes instalem e avaliem a ferramenta, afim de usa-la e ao
mesmo tempo fazer uma espécie de teste beta.

53

REFERENCIAS

APACHE SOFTWARE FOUNDATION. Apache Isis. Disponivel em:
<http:/isis.apache.org/>

APACHE SOFTWARE FOUNDATION. Apache Log4. Disponivel em: <htip:/
http:/logging.apache.org/log4i/2.x/>

APACHE SOFTWARE FOUNDATION. Apache Maven. Disponivel em:
<http://maven.apache.org/>

APACHE SOFTWARE FOUNDATION. Apache Shiro. Disponivel em: <http:/
http://shiro.apache.org/>

BOOCH, G.; RUMBAUGH, J. ; JACOBSON, I. The Unified Modeling Language
User Guide. 22 Edigdo. Addison Wesley, 2005. 436p.

CARMICHAEL, A.: HAYWOOD, D. Better Software Faster. Prentice Hall, 2002.

COCKBURN, A. Hexagonal Achitecture. 2005. Disponivel em:
<hitp://alistair.cockburn.us/Hexagonal+architecture>

COLLINS, D. Designing Object-oriented User Interfaces. Redwood City:
Benjamin/Cummings, 1995.

DATANUCLEUS. Data Nucleus. Disponivel em: <http://
http//www.datanucleus.org//>

DIVISAO DE BIBLIOTECA. Diretrizes para Apresentacéo de Dissertagbes e
Teses. Escola Politécnica da USP. junho. 2006. 105p.

EVANS, E. Domain Driven Design: Tackling Complexity in the Heart of Software.
12 Edigdo. Westford, EUA: Addison Wesley — Pearson Education, 2004. 529p.

FIRESMITH, D., Use Cases: The Pros and Cons. New York, EUA: R. Wiener,
1996.

FOWLER, M. Analysis Patterns: Reusable Object Models. 12 Edi¢do. Addison
Woesley, 1996. 384p.

FOWLER, M. Refactoring: Improving the Design of Existing Code. 12 Edicao.
Addison Wesley, 1999. 464p.

FOWLER, M. Patterns of Enterprise Applications Architecture. 12 Edicao.
Addison Wesley, 2002. 560p.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software. 12 Edicdo. Addison Wesley, 1994. 416p.

54

HAYWOOQOD, D. Domain Driven Design Using Naked Objects. 12 Edi¢do. EUA:
Pragmatic Bookshelf, 2009. 375p.

HAYWOOD, D. Introducing Apache Isis. Software’s Developer Journal, v. 1, n. 1,
p. 6-17, 2013.

ORACLE CORPORATION. MySQL Database. Disponivel em:
<htip://www.mysqgl.com/:>

PAWSON, R.; MATTHEWS, R. Naked Objects. 12 Edigdo. West Sussex,
Inglaterra: J Wiley, 2002.

PAWSON, R. Naked Obijects. 2004. 223 p. Tese (Doutorado) -~ Trinity College,
University of Dublin, Dublin, 2004.

REENSKAUG, T. Thing-Model-View-Editor. Xerox Parc, 1979. Disponivel em:
http://heim.ifi.uio.no/~tryqver/1979/mvc-1/1979-05-MVC.pdf13.

REENSKAUG, T. Model View Controller. Portland Pattern Repository.
Disponivel em: hitp://c2.com/cgi/wiki?ModelViewController

THIRUVATHUKAL, GEORGE K.; KONSTANTIN, LAUFER. A Stroll Through
Domain-Driven Development with Naked Objects. Computing in Science
Engineering: Scientific Programming. P. 76 — 83. Maio/dunho 2008,

